3.2.3 \(\int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx\) [103]

3.2.3.1 Optimal result
3.2.3.2 Mathematica [A] (verified)
3.2.3.3 Rubi [A] (verified)
3.2.3.4 Maple [B] (verified)
3.2.3.5 Fricas [A] (verification not implemented)
3.2.3.6 Sympy [F]
3.2.3.7 Maxima [B] (verification not implemented)
3.2.3.8 Giac [A] (verification not implemented)
3.2.3.9 Mupad [F(-1)]

3.2.3.1 Optimal result

Integrand size = 23, antiderivative size = 138 \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\frac {5 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {5 a \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {5 a \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

output
5/8*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+5/8*a*tan 
(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+5/12*a*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d 
*x+c))^(1/2)+1/3*a*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 
3.2.3.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.79 \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (30 \sqrt {2} \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+42 \sin \left (\frac {1}{2} (c+d x)\right )+5 \left (\sin \left (\frac {3}{2} (c+d x)\right )+3 \sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{96 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^4,x]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(30*Sqrt[2]*Ar 
cTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^3 + 42*Sin[(c + d*x)/2] + 5*( 
Sin[(3*(c + d*x))/2] + 3*Sin[(5*(c + d*x))/2])))/(96*d)
 
3.2.3.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3251, 3042, 3251, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \int \sqrt {\cos (c+d x) a+a} \sec ^3(c+d x)dx+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \sqrt {\cos (c+d x) a+a} \sec ^2(c+d x)dx+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {5}{6} \left (\frac {3}{4} \left (\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}\)

input
Int[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^4,x]
 
output
(a*Sec[c + d*x]^2*Tan[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (5*((a*Se 
c[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3*((Sqrt[a]*Arc 
Tanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Tan[c + d*x] 
)/(d*Sqrt[a + a*Cos[c + d*x]])))/4))/6
 

3.2.3.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.2.3.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(716\) vs. \(2(118)=236\).

Time = 1.78 (sec) , antiderivative size = 717, normalized size of antiderivative = 5.20

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-120 a \left (\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+60 \left (2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+3 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +3 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-90 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a -90 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -160 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +15 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +66 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{6 \sqrt {a}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right )^{3} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(717\)

input
int((a+cos(d*x+c)*a)^(1/2)*sec(d*x+c)^4,x,method=_RETURNVERBOSE)
 
output
1/6*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-120*a*(ln(4/(2*cos 
(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^ 
(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)- 
2*a)))*sin(1/2*d*x+1/2*c)^6+60*(2*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a 
^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c) 
+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*ln(-4/(2*cos(1/2 
*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-90*ln(-4/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-90*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2 
^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2) 
+2*a))*a-160*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1 
/2*c)^2+15*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2 
*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+15*ln(4/(2*cos( 
1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d 
*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+66*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2*d*x+1/2*c) 
+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.3.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.20 \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\frac {15 \, {\left (\cos \left (d x + c\right )^{4} + \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (15 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right ) + 8\right )} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^4,x, algorithm="fricas")
 
output
1/96*(15*(cos(d*x + c)^4 + cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 
 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2 
)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d* 
x + c) + a)*(15*cos(d*x + c)^2 + 10*cos(d*x + c) + 8)*sin(d*x + c))/(d*cos 
(d*x + c)^4 + d*cos(d*x + c)^3)
 
3.2.3.6 Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \sec ^{4}{\left (c + d x \right )}\, dx \]

input
integrate((a+a*cos(d*x+c))**(1/2)*sec(d*x+c)**4,x)
 
output
Integral(sqrt(a*(cos(c + d*x) + 1))*sec(c + d*x)**4, x)
 
3.2.3.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5115 vs. \(2 (118) = 236\).

Time = 45.83 (sec) , antiderivative size = 5115, normalized size of antiderivative = 37.07 \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^4,x, algorithm="maxima")
 
output
1/96*(15*(sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - s 
qrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2) 
*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*log( 
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d* 
x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*log(2*cos(1/2*d 
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) 
- 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 8*sin(1/2*d*x + 1/2*c))*cos(6*d*x 
+ 6*c)^2 + 135*(sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2 
*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 
2) - sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s 
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2 
)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos( 
1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*log(2*cos 
(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1 
/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 8*sin(1/2*d*x + 1/2*c))*cos( 
4*d*x + 4*c)^2 + 135*(sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x 
 + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2 
*c) + 2) - sqrt(2)*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)...
 
3.2.3.8 Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.12 \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=-\frac {\sqrt {2} {\left (15 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (60 \, \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 33 \, \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

input
integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^4,x, algorithm="giac")
 
output
-1/96*sqrt(2)*(15*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs 
(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) + 4*(60*sg 
n(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 80*sgn(cos(1/2*d*x + 1/2* 
c))*sin(1/2*d*x + 1/2*c)^3 + 33*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/ 
2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)/d
 
3.2.3.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \sec ^4(c+d x) \, dx=\int \frac {\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int((a + a*cos(c + d*x))^(1/2)/cos(c + d*x)^4,x)
 
output
int((a + a*cos(c + d*x))^(1/2)/cos(c + d*x)^4, x)